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ABSTRACT

This paper, the first of a two-part series, presents results of an unsteady rotordynamic
analysis of a long-bearing squeeze film damper executing circular centered orbits
using a fluid circuit approach. A series of nodes and branches represent the
geometry of the flow circuit. The mass and momentum conservation equations are
solved to predict the pressure distribution in the squeeze film. The motion of the
bearing is simulated by the variation of geometry within the flow path. The modeling
methodology is benchmarked against published experimental long-bearing squeeze
film damper test results. The model provides good agreement with the experimental

damping coefficient.

Nomenclature

C  Squeeze film damper radial clearance (difference in radii)
C, =pwRYC? Pressure conversion factor
C, =-f/e Dimensionless direct damping coefficient

d  Damper journal diameter



D, =f/e Dimensionless direct inertia coefficient
e Dynamic eccentricity (orbit radius)

L Damper journal length
m  Mass flow rate

p  Local pressure within the squeeze film region
r Radial coordinate

R Damper journal radius

Re = pwC¥u Reynolds number

z  Axial coordinate

g  =¢/C Eccentricity ratio (dimensionless orbit radius)
0  Circumferential coordinate

p  Fluid absolute viscosity

p  Fluid density

T  Shear stress

o  Frequency of damper journal (whirl frequency)

Introduction

Squeeze film dampers (SFD) have been used to provide damping in high speed
rotating machinery with rolling element bearings for years. Extensive research has
been performed both experimentally and analytically to examine the effects of
geometry, cavitation, Reynolds number, etc. on squeeze film damper pressures and

forces. The experimental work of Jung et al.'? examined the pressure distributions



and force coefficients for a squeeze film damper executing circular centered orbits for
both open ended (short bearing) and partially sealed (long bearing) configurations.
Analytical, circular-centered orbit, SFD models have been published for a variety of
Reynolds numbers for both long bearing (axial flow neglected) and short bearing
(circumferential flow neglected) assumptions. Analytical work by San Andres’ and
Tichy™® addressed the effects of fluid inertia on both short and long bearing squeeze
film dampers, and the effect of turbulence on short bearing squeeze film dampers.
Recently, Schallhorn, ef al."?, described a fluid circuit approach for modeling long
bearing squeeze film damper rotordynamics. In this paper, a steady state modeling
technique, utilizing a fluid network code, was described and the technique was
benchmarked against published experimental data. That modeling technique has been

extended to an unsteady model of the damper by Schallhorn **.

This paper presents the results of the unsteady modeling for a long bearing squeeze
film damper executing circular orbits. Comparisons of the unsteady analytical

predictions to the experimental work of Jung et al? are presented.

Fluid Flow Code

A general purpose, one-dimensional, network flow analysis computer code was
chosen as the platform for SFD modeling'®. The code uses a series of nodes and
branches to define a flow network. Nodes are positions within the network where
fluid properties (pressure, density, etc.) are either known or calculated. Branches are

the portions of the flow network where flow conditions (geometry, flow rate, etc.) are



known or calculated. The code uses a finite volume approach with a staggered grid.
This approach is commonly used in computational fluid dynamics schemes
(Patankar', Patankar and Karki'®). The staggered grid approach uses overlapping
control volumes where the conservation of mass and the conservation of momentum
are calculated in separate control volumes. For a conventional grid where only one
control volume is used for both scalar and vector quantities, interpolation is required
in formulating the conservation of the scalar quantities at the edges of the control
volume and numerical errors result. For a staggered grid, however, mass flow rates
are available at the surface of the continuity control volume and do not have to be

interpolated.

Governing Equations

The primary governing equations used in this analysis are the continuity momentum
equations. Additionally, two auxiliary equations are necessary for closure of the
unknown variables. These auxiliary equations consist of the energy equation and the
equation of state. Equations 1 and 2 are the unsteady governing equations used in the

analysis. Equation 1 is the unsteady continuity equation for the flow into a node,

where Zr'nin is the summation of flow into a node through the branches connecting
to it, z m,,, is the summation of flow out of a node through the branches connecting

to it and Mg, is a mass source term (which accounts for any other mass flow into
or out of the node). Equation 2 represents the one-dimensional conservation of

momentum for a branch in the flow network, where Ap is the pressure difference



across the branch, A is the cross-sectional area, L is the flow path length in a

cross Section
segment of the damper, p is the density of the fluid, u is the fluid velocity, v is the
normal velocity of the inner segment of the damper, A, is a segmented area of the

inner race corresponding to its normal velocity, tfis the shear stress and Ag,.,, is the

shear area.

. . . Mt ™ Mt-At
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Equations 1 and 2 are solved in a simultaneous solution iterative scheme (Newton-

Raphson scheme) in order to obtain the branch flow rates and node pressures.

In order to obtain the mass resident in a node at a given time, an additional equation is
necessary. The equation chosen to satisfy the unknown resident mass was the
generalized equation of state; however, temperature is necessary for the state
equation. In order to satisfy the requirement for temperature in the state equation, the
energy conservation equation is used. Equation 3 is the energy equation used in the

code, where h is the enthalpy of the fluid (from which temperature can be obtained)
and Q.. is any additional heat source added to the fluid. Note that the term,

PA V> Tepresents the work done on the fluid by the inner segment of the damper



(i.e. the work done on a fluid by a moving boundary). Equation 4 is the generalized
equation of state used in the code, where R is the gas constant of the fluid, T is the

temperature of the fluid and Z is the compressibility of the fluid.
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Unsteady Long Bearing Squeeze Film Damper Modeling

The model used in the analysis is shown schematically in Figure 1. In the analysis,
the bearing remains wrapped; however, curvature is neglected since the clearance to
radius ratio is small (~1/40). This model varies from prior steady state modeling
performed by the authors'>. The motion of the inner race of the damper is simulated
by the variation of the geometry of the flow path, as is illustrated in Figure 2. This
geometry variation generates a pressure variation around the circumference of the
damper. For rotordynamics applications, the pressure distribution of the fluid circuit

model is integrated to obtain the radial and tangential forces of Equations 5 and 6.

2r
Fr = _[0 pAnormal COSGde (5)

2r
Ft = J‘O pA normal Sil’l ede (6)



In a dimensionless form, the radial and tangential forces are calculated using

Equations 7 and 8, where Cp is the pressure coefficient defined in the nomenclature.

r

2n p
= J() C—pCOSGde (7)

2n
_ P
ft = .“0 C—p Sin 9d9 (8)

In rotordynamic models, these force components are represented by rotordynamic
coefficients. These coefficients are analogous to the mass, damping and stiffness
terms for a spring-mass-damper system. For an uncavitated squeeze film damper, the
only two coefficients which occur are a radial inertia (or added mass) term, D,,, and a
circumferential damping term, C,. In order to compare with published experimental
results’, the damping and inertia coefficients are normalized by the eccentricity ratio
and pressure coefficient, equations 9 and 10. Equation 9 is the non-dimensional
circumferential damping coefficient and Equation 10 is the non-dimensional radial

inertia coefficient.

C.=-f/e 9

D, =f/e (10)



Squeeze Film Damper Experimental Benchmark

The experimental results of Jung, et al’ were used to validate the modeling
methodology. The experimental work simulated a long bearing SFD by using an O-
ring seal on one side of the bearing, and a serrated piston ring on the other side of the
bearing to limit axial flow. A Reynolds number of 49.0 and an eccentricity ratio of

0.82 were chosen for comparison as the data indicates that cavitation was not present.

Results
Figure 3 shows the pressure profile of the benchmark squeeze film damper model
compared with Jung’s’ experimental results. The pressure has been non-

dimensionalized using equation 16 for comparison with Jung’s published data.

P p p
- - 11
p reference Cp Re pRz @ 2 ( )

The predicted pressure profile follows a similar trend as the experimental data. The
predicted pressure profile deviates from the experimental results in the low pressure
region; however, the model is able to predict the phase shift observed in the
experimental benchmark, unlike an earlier published steady state model'’. The
rotordynamic coefficients for the benchmark model are presented in Table 1, along
with Jung’s experimentally derived coefficients. As Table 1 indicates, the damping
coefficient predicted using the unsteady model lies just inside of the uncertainty band

of Jung’s experimental data. It should be noted that the uncertainty analysis derived



in reference 13 is very conservative (in favor of Jung, ef al.); therefore, the unsteady
model prediction is most likely to be well within the actual uncertainty band if all
error sources were accounted for. The unsteady model dramatically over predicts the
inertia coefficient compared to Jung’s experimental results (unlike the steady state
model which substantially under predicts the inertia coefficient). Figure 4
demonstrates the periodic nature of the model. The pressure profile shown in Figure
4 follows the variation in the clearance during the orbit (Figure 2); therefore verifying
that for circular centered orbits, any snapshot in time should produce the same

rotordynamic coefficients.

Parametric Studies

A set of parametric studies was performed on the unsteady model to observe the
behavior of the model under various conditions for circular centered orbits. The first
parametric study examined the variation of the Reynolds number for a fixed orbit
size. The second parametric study examined the variation of orbit size for various

Reynolds numbers.

Parametric Study on Reynolds Number for Fixed Orbit Size

In order to compare the unsteady model with the results of the benchmark
experimental work?, a parametric study on the prediction of rotordynamic coefficients
over a range of Reynolds numbers was performed. This study was carried out for the

following Reynolds numbers: 15, 25, 35, 49 and 75. Figure 5 shows the



dimensionless pressure profiles for Reynolds numbers 15, 25, 35, and 75,

respectively.

Figures 6 and 7 show the coefficients predicted by this parametric study compared to
Jung’s experimental data and his prediction. In Figure 6, the unsteady model over-
predicts the damping coefficient by ~ 10-15%, when compared with the test data
(considered excellent agreement in rotordynamics). It is noted, however, that the
experimental data has significant scatter and the precision uncertainty has not been
included in the uncertainty estimate. The model prediction of the damping coefficient
is an improvement over Jung’s analytical prediction. As Figure 7 shows, the unsteady
model over-predicts the inertia coefficient compared with the experimental data. The
reason for this over prediction is the difference between the predicted and

experimental pressure at the position of lowest pressure (see Figure 3 for 0 <0 < 1).

Parametric Study on Orbit Size for Various Reynolds Numbers

A parametric study was performed to examine the effect of orbit size (orbit radius) on
the prediction of rotordynamic coefficients. Three orbit eccentricity ratios (g) were
chosen for the study: € = 0.25, 0.50, and 0.82, respectively. Recall that € = 0.82 is the
eccentricity ratio of the benchmark case. Figures 8 and 9 are the dimensionless
pressure profiles for eccentricities of € = 0.25 and &€ = 0.50 at three Reynolds
numbers: 15, 49, and 75, respectively. Figure 10 is an overlay of the pressure profile

for the three orbit sizes at a Reynolds number of 49. As orbit size decreases, the

10



circumferential pressure variation reduces and becomes less skewed (the curvature on
the low pressure end resembles that of the high pressure end). As a result, the

damping coefficient and force decrease with decreasing orbit size.

The predicted dimensionless rotordynamic coefficients are shown in Figures 11 and
12. Figure 11 illustrates that the dimensionless damping coefficient increases with
increasing orbit size and Reynolds number. In Figure 12, the dimensionless inertia
coefficient decreases with increasing orbit, the opposite of damping. However, in the
definitions of these coefficients, the eccentricity ratio appears in the denominator (see
Equations 9 and 10). It is this division by € which causes the reversal in order
between Figures 11 and 12; therefore two additional figures (Figures 13 and 14) are
provided to illustrate the non-dimensional tangential and radial forces (which

correspond to the damping and inertia forces, respectively, see Equations 7 and 8).

Figure 13 further illustrates that the tangential (i.e. damping) force increases with
increasing orbit size. This result is expected based upon rotordynamic theory®. In
Figure 14, however, the effect of orbit size on the radial (i.e. inertia) force is
inconclusive, since the orbit size does not appear to correlate with the radial force.
This lack of correlation is most likely due to the over-prediction of the low pressure
region, as was seen in the comparison between the unsteady GFSSP prediction and

experimental data for the benchmark case (Re = 49, €, = 0.82).

1



Conclusions

An unsteady long bearing squeeze film damper (SFD) rotordynamic analysis has been
developed and successfully implemented. The approach uses a general one
dimensional fluid flow code in which shear stress is calculated using friction factors.
The motion of the rotor is simulated by variation of the geometry of the flow circuit
and accounting for the affect of a cross inertial term in the momentum equation due to
this geometry change. Results show that the unsteady modeling technique works over
a wide variety of conditions. Reynolds numbers ranging from 15 to 75, and
eccentricity ratios ranging from 0.25 to 0.82 were examined. Results of a benchmark
model provided good agreement with experimental data (Jung, et al., 1991b) for the
prediction of the damping coefficient. The unsteady prediction of the damping
coefficient varied less than 14% from experimental results, when experimental
uncertainty is neglected. The unsteady damping coefficient results are within the
error band when uncertainty is accounted for. The inertia coefficient is over-predicted

by a factor of ~2 compared to the benchmark case.

A parametric study using the benchmark geometry for a variety of Reynolds numbers
has been performed. This study shows that the damping coefficient prediction falls
within the uncertainty band of Jung’s experimental data, an improvement over Jung’s

own analytical predictions.

A second unsteady model parametric study was performed to observe the damper

performance at various eccentricity ratios for a range of Reynolds numbers. The

12



variation of the eccentricity ratio has a large effect on the predictions of the damping
(tangential) force component. As the eccentricity ratio increases, the damping force
increases. However, the effect on the inertia (radial) force component is inconclusive.
Further experimental investigation is necessary to determine the radial force variation

with eccentricity ratio and confirm the predictions of the damping force.

Although the predicted radial and tangential forces may be comparable in magnitude,
a typical rotor system will have many other sources of radial force (probably of
greater magnitude than that of the damper); however, the system may not have any

other source of tangential force approaching the magnitude provided by the damper.

In conclusion, it must be noted that the principle purpose of a squeeze film damper is
to provide a damping (tangential) force to a rotordynamic system, not an inertial
(radial) force. An unsteady analysis which can accurately predict the damping force

over a variety of operating conditions is a valuable tool for rotordynamic analysis.

Acknowledgments

The work was performed for the National Aeronautics and Space Administration’s
Marshall Space Flight Center under Task Directive 611-022 for Contract NASS-
40836 with Mr. Eric Earhart as the Task Initiator. The authors would like to
acknowledge the support of Dr. Steven Ryan of the Marshall Space Flight Center and

Dr. Robert LeMaster of Sverdrup Technology.

13



1.

References

Jung, S.Y.; San Andres, L.A.; Vance, J.M.: “Measurements of Pressure
Distributions and Force Coefficients in a Squeeze Film Damper Part I: Fully Open
Ended Configuration,” 7ribology Transactions, Volume 34, No. 3, pp. 375-382,

1991.

Jung, S.Y.; San Andres, L.A.; Vance, J.M.: “Measurements of Pressure
Distributions and Force Coefficients in a Squeeze Film Damper Part II: Partially
Sealed Configuration,” Tribology Transactions, Volume 34, No. 3, pp. 383-388,

1991.

San Andres, L.A: “Effect of Fluid Inertia on Force Coefficients for the Long
Squeeze Film Damper,” Tribology Transactions, Vol. 31, No. 3, pp. 370-375,

1988.

San Andres, L.A; Vance, J.M.: “Effect of Fluid Inertia on the Performance of
Squeeze Film Damper Supported Rotors,” ASME Journal of Engineering for Gas

Turbines and Power, Vol. 110, pp. 51-57, January 1988.

San Andres, L.A; Vance, J.M.: “Effect of Fluid Inertia on Squeeze-Film Damper
Forces for Small-Amplitude Circular-Centered Motions,” ASLE Transactions, Vol.

30, No. 1, pp. 62-68, 1987.

14



10.

11.

San Andres, L.A; Vance, J.M.: “Effect of Fluid Inertia and Turbulence on the
Force Coefficients for Squeeze-Film Dampers,” ASME Journal of Engineering for

Gas Turbines and Power, Vol. 108, pp. 332-339, April 1986.

Tichy, J.A.: “A Study of the Effect of Fluid Inertia and End Leakage in the Finite
Squeeze Film Damper,” ASME Journal of Tribology, Vol. 109, pp. 54-59, January

1987.

Tichy, J.A.: “Effects of Fluid Inertia and Viscoelasiticity on the One-Dimensional

Squeeze-Film Bearing,” ASLE Transactions, Vol. 27, No. 2, pp. 164-167, 1984.

Tichy, J.A.: “Effects of Fluid Inertia and Viscoelasiticity on Squeeze-Film Bearing

Forces,” ASLE Transactions, Vol. 25, No. 1, pp. 125-132, 1982.

Majumdar, A.K.: “A Generalized Fluid System Simulation Program to Model

Flow Distribution in Fluid Networks,” SvT Report No. 331-201-96-003, October

1996.

Vance, J.M.: Rotordynamics of Turbomachinery, pp. 240-247, J. Wiley & Sons,

1988.

15



12. Schallhom, P.A.; Elrod, D.A.; Goggin, D.G.; Majumdar, A K.: “A Fluid Circuit
Model for Long Bearing Squeeze Film Damper Rotordynamics,” AI4A4 Journal of
Propulsion and Power, submitted for consideration of publication December,

1998.

13. Schallhorn, P.A.: Unsteady Analysis of the Fluid Film Forces in a Long Bearing

Squeeze Film Damper, Ph.D. Dissertation, The University of Alabama in

Huntsville, 1998.

14. Schallhorn, P.A.: “Unsteady Long Bearing Squeeze Film Damper Modeling for

Circular Centered Orbits and Statically Eccentric Operation,” SvT Report No. 611-

022-98-002, November 1998.

15. Patankar, S., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing

Co., New York, 1980.

16. Patankar, S., Karki, K., Documentation of COMPACT-2D Version 3.1, (User’s

Manual) Innovative Research, Inc., 1993.

16



Ll

gurapojy Jadure wii] 9zaanbg Apeajsuf) :[ 231




81

8S'TIFS6T~ | LET1768 ~ | Mnsay [eyuswinradxy v 12 ‘Sunf

1’19 £001 uonoIpald 9pOJN Apealsup)

:Q zmv

uostiedwo)) JUSIDIJA0)) JTWEUAPIOIOY YIeWduag SSa[uoIsuawiq [ d[qe]



61

(0DD) sHqIQ pardu3)

Te[ndIl)) 10] UOTIBLIR A ALJdWO030) SUl[apojA Jadwe( Wil 9zaanbg Apeaisuy) :Z 2ns1]

439NN 3AON

ov GE oe T4 (474 Gl ol S 0
, , ) 0

T 200

T ¥0°0
o
-
o m
Znde = ym—6— >
| N\_au:sclx|W m
Jdzo=1m— =
- 2

T 800

110

[4%0)



0c

Ke[10A() BIR(J S, JUn( pUE [9pPOJA 18IS APEIS Ylm

suondIpald 9[1Jolq 2INSsAIg (IS SSO[UOISUIWI(] [OPOJN APealsuf) Yrewyouag :¢ 213l

(suejpes) ajbuy

§'i-

| §0-

aydoidy

S0

-
g ]

, ejeq [ejuawsdxg —v—
h (Aysuaq ueysuo)) [Ppay G4S diels Apesig —
| I9PON OdS Apeatsun ——

4 ,, f




17

ase)
YIRWOUSg 10] pOUdJ SUQ I9AQ) 9PON 'SA A[1J0I 2Inssald pawIpaid dSSAD if 2Ina1]

000€°0-

[ 00SZ°0-

000Z°0-

[ 00S}°0-

0004°0-

(1sd) sansseidVy

00500~

00000

[ 00500

o0oolL0

0051°0



[44

SIaquINN

SPJOUAay SNOLIEA J€ S[3UY 'SA UOUNQUISI(] 2Inssald (IS SSO[UOISUSWI(] G AIN3L]

(sueipes) a|buy

'GL=0y =
|

|Gz =0y ¥

Gl=9y >

gt =0 ——|

aydo/dv



X4

SuOndIpald JUAIOYJe0)) Juldure(] SSa[uoIsuatl(] [9PON dSSAD Apeaisu() :9 amsL]

JequinN sploufay

0S 514 oy Se o€ 14 114 Sl
f + ; : 0

ejeq pwawsadxg v
uonoIpad [ednAeuy sbunp —*—; 1 0e
Apeaisun - UOROIPaI dSSHD —*— |

1oy

no

[ 09

08

T ool

ocl



14

SUOTIOIPAI JUSIONJS0)) BIISU] SSO[UOISUIWI( [SPOIN dSSAD Apealsuf) :/ dIn3i]

JaquinN sploufay

0¢-
_ T O}~
- v
Sv ov g€ o€ CTAN 0z, 1% «««F
i T . “ - $ b v = m«mm gV 0
H
vEgey
v b
W v v ‘\\\\X\\\\\.\.\Kw 0L
- 0z
o
3
T 0€
| 1 op
eleg jpwauedxg v ﬁ
uoNoIpald [esilAleuy sBunp —X— ,
Apeajsun - uonoipaLd n_mm“_ololw 108
| |
T 09

0L



174

GZ'0 = 3 10J 9[3UY "SA UOINQUISI(] ANSSAIJ (I.[S SSI[UoIsuaw( :§ 2131
(sueipel1) sjbuy
¥0-
gr=oy——
By =8y X~ :
GL=oy™* [
Al
.n
zo-
.
£ z b
* - 0
[ 10
N
A
7
7
1¢0

£0

aydo/dvy



9z

0S°0 = 3 10J 9[3uy "SA UonNQLISI( 2INSsAId (]S SSI[UOISUdWI(] :6 NI

(sueipes) 9)buy

90

aydodv



LT

6% = 9 10J 3[3uy ‘sA uosiredwo)) uorNqUISI(] 2INSSAJ (S SSO[UOISUWI(] :(] 2131

(sueipes) ajbuy

vi-

aydody




G

8¢

s)nsay Apmg

dUPWEIR - JUSIDNJP0)) Sulduwie(] SSS[UOISUSWI(] [9POIN dSSJD Apeaisufy :[[ aIndi]

laquinN spjoufAay

g9 gs 14

GE

14

Gl

Z8'0 ='sd3 104 Apesisun - uonaIpald 4SS —H
060 ='sd3 40} Apeaisun - UOROIP3I] dSSHD —*—
620 ='sdg Joj Apessun - uojoIpald 4SSO

T ov

09

08

- 001

" 0Z)

ovl

(D) jusidyys0s Buidweq ssajuoisuswig



S)NSaYy
Apmg dLnaureled - JUSIOLJ0)) BIISU] SSA[UOISUSWI(] [9POIN (1S APEaIsu[] 7| oIn31]

JaquinN spjoufAay

0c-

S9 S§ 4 g¢ T4 qt

K
t 08 o
_ 3
o
3
2,
o
3
bl
108 @
=)
1]
&
. Y
0
2
. 10el 3
3
2.
— =
W 28'0 = "sd3 4oy Apeajsun - UOROIPal] dSSHD —H— [S)
i s |
| 050="5030; ApEjsun - uoROIPRLd dSSIO | 1 g =

| 520 = sd3 Joj Apeysun - UOROIPRLY dSSHH |

0}574



GL

0¢

s)nsay
Apni§ oLndWeIRd - 9210,] [ENUSTUE] SSA[UOISUSWI(] [OPOIN (1S APEAISU[) ¢ [ oINTL]

Jaquinp spjouAay
g9 GG 114 1°1% T4 Gl

? : * 0

.

. 0¢

oy

- 09

- 08

(') 92104 |eyuabue] ssajuoisuswig

28°0="s03 Jo} Apeajsun - uonoIPaKd dSSJD —* - 001

| 05°0="sdg Joj Apeaisun - uojoIPald 4SSO —*—
§¢'0="sd3 Joj Apesjsun - uogopeid dSSIO —E— |

ocl



1€

snsay Apryg dLoWRIR] - 9310, [RIPRY SSS[UOISUSUWI(] [9POIN (I.IS Apeaisufy :f[ 2In3i,]

JaquinpN spjouhay

0¢-
qs 69 Gs St Ge 14 Gt
—-- e e —_— } -0
K
" o
* w
[12]
102 @
2
2
13
n
w
Tor &
2
-3
| J T
[=}
i | a
Lo | 09 ®
| 28°0 = 'sdg Joj Apesjsun - UoKOIPa.H dSSIO | -
| W ™
| 060 = "sd3 1oy ApaISUN - UOROIPELS JSSID —— | =
s 620 = 'SA3 104 Apeaysun - uoRoIPaLd dSS4O — i 1o

00}



